На главную страницу портала Know-House.Ru Инженерное оборудование зданий
ИНФОРМАЦИОННАЯ СИСТЕМА ПО СТРОИТЕЛЬСТВУ "НОУ-ХАУС.ру" На главную страницу   Карта сайта
Новости от НOУ-ХАУС.ру | Форум по строительству | Объявления | Реклама у нас | Наши координаты | Карта сайта
   
Инженерное оборудование зданий Отопление зданий  
Классификация и конструктивные решения систем отопления | Определение тепловой мощности систем отопления | Оборудование систем отопления |

Классификация и конструктивные решения систем отопления



В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным или лучистым.

К конвективному относят отопление, при котором температура внутреннего воздуха tв поддерживается на более высоком уровне, чем радиационная температура помещения tR (tв>tR), понимая под радиационной усредненную температуру поверхностей, обращённых в помещение, вычисленную относительно человека, находящегося в середине этого помещения. Лучистым называют отопление, при котором радиационная температура помещения превышает температуру воздуха (tR>tв). Лучистое отопление при несколько пониженной температуре воздуха tв (по сравнению с конвективным отоплением) более благоприятно для самочувствия человека в помещении (например, до 18…20°C вместо 20…22°C в помещениях гражданских зданий).

Отопление помещений осуществляется специальной технической установкой, называемой системой отопления. Система отопления - это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.

Основные конструктивные элементы системы отопления (рис. 4.2.1):

  • теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении) - элемент для получения теплоты;
  • теплопроводы - элемент для переноса теплоты от теплоисточника к отопительным приборам;
  • отопительные приборы - элемент для передачи теплоты в помещение.

Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной рабочей среды. Жидкая (вода или специальная незамерзающая жидкость - антифриз) или газообразная (пар, воздух, продукты сгорания топлива) среда, перемещающаяся в системе отопления, называется теплоносителем.


Системы отопления по расположению основных элементов подразделяются на местные и центральные (рис. 4.2.2).

В местных системах для отопления, как правило, одного помещения все три основных элемента конструктивно объединяются в одной установке. Примером местной системы отопления могут служить отопительные печи (см. рис. 4.2.2, а).

Центральными (см. рис. 4.2.2, б) называются системы, предназначенные для отопления группы помещений из единого теплового центра. В тепловом центре (пункте) находятся теплогенераторы (котлы) или теплообменники. Они могут размещаться непосредственно в обогреваемом здании (в ИТП) либо вне здания - в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящей котельной) или ТЭЦ.

Теплопроводы центральных систем (см. рис. 4.2.2, б, в) подразделяют на магистрали (подающие, по которым подается теплоноситель, и обратные, по которым отводится охладившийся теплоноситель), стояки (вертикальные трубы) и ветви (горизонтальные трубы), связывающие магистрали с подводками к отопительным приборам.

Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции.

Для отопления зданий и сооружений в настоящее время преимущественно используют воду или атмосферный воздух, гораздо реже водяной пар или нагретые газы. В зависимости от вида используемого в системе отопления теплоносителя их принято называть системами водяного, парового, воздушного или газового отопления.

Сопоставим характерные свойства указанных видов теплоносителя при использовании их в системах отопления.

Газы, образующиеся при сжигании твёрдого, жидкого или газообразного органического топлива, имеют сравнительно высокую температуру и применимы в тех случаях, когда в соответствии с санитарно-гигиеническими требованиями удаётся ограничить температуру теплоотдающей поверхности отопительных приборов. Высокотемпературные продукты сгорания топлива могут выпускаться непосредственно в помещения или сооружения, но при этом ухудшается состояние их воздушной среды, что в большинстве случаев недопустимо. Удаление же продуктов сгорания наружу по каналам усложняет конструкцию и понижает КПД отопительной установки. При этом возникает необходимость решения экологических проблем, связанных с возможным загрязнением атмосферного воздуха продуктами сгорания вблизи отапливаемых объектов. Область использования горячих газов ограничена отопительными печами, газовыми излучателями и другими подобными местными отопительными установками.

В отличие от горячих газов вода, воздух и пар используются многократно в режиме циркуляции и без загрязнения окружающей здание среды.

Вода представляет собой жидкую, практически несжимаемую среду со значительной плотностью и теплоёмкостью. Вода изменяет плотность, объём и вязкость в зависимости от температуры, а температуру кипения - в зависимости от давления, способна поглощать (сорбировать) или выделять растворимые в ней газы при изменении температуры и давления.

Пар является легкоподвижной средой со сравнительно малой плотностью. Температура и плотность пара зависят от давления. Пар значительно изменяет объём и теплосодержание (энтальпию) при фазовом превращении.

Воздух также является легкоподвижной средой со сравнительно малыми вязкостью, плотностью и теплоёмкостью, изменяющей плотность и объём в зависимости от температуры.

Сравним эти три теплоносителя по показателям, важным для выполнения требований, предъявляемых к системе отопления.

Одним из санитарно-гигиенических требований является поддержание в помещениях равномерной температуры. По этому показателю преимущество перед другими теплоносителями имеет воздух. При использовании нагретого воздуха - теплоносителя с низкой теплоинерционностью - можно постоянно поддерживать равномерной температуру каждого отдельного помещения, быстро изменяя температуру подаваемого воздуха. При этом одновременно с отоплением можно обеспечить вентиляцию помещений.

Применение в системах отопления горячей воды также позволяет поддерживать равномерную температуру помещений, что достигается регулированием температуры подаваемой в отопительные приборы воды. При таком регулировании температура помещений все же может несколько отклоняться от заданной (на 1…2°C) вследствие тепловой инерции масс воды, труб и приборов.

При использовании пара температура помещений неравномерна, что противоречит гигиеническим требованиям. Неравномерность температуры возникает из-за несоответствия теплопередачи приборов при неизменной температуре пара (при постоянном давлении) изменяющимся теплопотерям помещения в течение отопительного сезона. В связи с этим приходится уменьшать количество подаваемого в приборы пара и даже периодически отключать их во избежание перегревания помещений при уменьшении их теплопотерь.

Другое санитарно-гигиеническое требование - ограничение температуры наружной поверхности отопительных приборов - вызвано явлением разложения и сухой возгонки органической пыли на нагретой поверхности, сопровождающимся выделением вредных веществ, в частности, окиси углерода. Разложение пыли начинается при температуре 65…70°C и интенсивно протекает на поверхности, имеющей температуру более 80°C.

При использовании пара в качестве теплоносителя температура поверхности большинства отопительных приборов и труб постоянна и близка или выше 100°C, т. е. превышает гигиенический предел. При отоплении горячей водой средняя температура нагретых поверхностей, как правило, ниже, чем при применении пара. Кроме того, температуру воды в системе отопления понижают для снижения теплопередачи приборов при уменьшении теплопотерь помещений. Поэтому при теплоносителе воде средняя температура поверхности приборов в течение отопительного сезона практически не превышает гигиенического предела.

Следует отметить, что из-за высокой плотности воды (больше плотности пара в 600…1500 раз и воздуха в 900 раз) в системах водяного отопления многоэтажных зданий может возникать разрушающее гидростатическое давление.

Воздух и вода до определённой скорости движения могут перемещаться в теплопроводах бесшумно. Частичная конденсация пара вследствие попутных теплопотерь через стенки паропроводов и появления попутного конденсата вызывает шум (щелчки, стуки и удары) при движении пара.

В суровых условиях российской зимы в некоторых случаях рекомендуется использовать в системе отопления специальный незамерзающий теплоноситель - антифриз. Антифризами являются водные растворы этиленгликоля и других гликолей, а также растворы некоторых неорганических солей. Любой антифриз является достаточно токсичным веществом, требующим особого с ним обращения. Его использование в системе отопления может привести к некоторым негативным последствиям (ускорение коррозионных процессов, снижение теплообмена, изменение гидравлических характеристик, завоздушивание и др.). В связи с этим, применение антифриза в качестве теплоносителя в каждом конкретном случае должно быть достаточно обоснованным.

Перечислим преимущества и недостатки основных теплоносителей для отопления.

При использовании воды обеспечивается достаточно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, достигается бесшумность движения в теплопроводах. Недостатком является большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплопередачи отопительных приборов.

При использовании пара достигается быстрое прогревание приборов и отапливаемых помещений. Гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально. Однако пар как теплоноситель не отвечает санитарно-гигиеническим требованиям, движение его в трубах сопровождается шумом.

При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в воздуховодах и каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.

В настоящее время в России применяют центральные системы в основном водяного и, значительно реже, парового отопления, местные и центральные системы воздушного отопления, а также печное отопление в сельской местности. Принципы конструирования и расчета воздушного отопления, а также применяемое при этом оборудование полностью соответствуют тому, что рассмотрено ниже, в разделе 4.3. В связи с практически повсеместным применением в России водяного отопления именно ему и будет посвящен дальнейший обзор конструктивных особенностей этого вида инженерного оборудования зданий.

По температуре теплоносителя различаются водяные системы низкотемпературные с предельной температурой горячей воды tг< 70°C, среднетемпературные при tг 70-100°C и высокотемпературные при tг > 100°C. Максимальное значение температуры воды ограничено 150°C.

По способу создания циркуляции воды системы разделяются на системы с механическим побуждением циркуляции воды при помощи насоса (насосные) и с естественной циркуляцией (гравитационные), в которых используется свойство воды изменять свою плотность при изменении температуры. Насосные системы используются практически повсеместно. Область применения гравитационных систем в настоящее время ограничена их использованием для отопления жилых домов в сельской местности.

По положению труб, объединяющих отопительные приборы, системы делятся на вертикальные и горизонтальные (см. рис. 4.2.2, б, в).

В зависимости от схемы соединения труб с отопительными приборами системы бывают однотрубные и двухтрубные (рис. 4.2.3).

В каждом стояке (см. рис. 4.2.3, а) или ветви однотрубной системы отопительные приборы соединяются одной трубой, и вода протекает последовательно через все приборы. Если прибор разделен условно по вертикали на две части, в которых вода движется в противоположных направлениях и теплоноситель последовательно проходит сначала через все верхние части, а затем через все нижние части, то такая система носит название бифилярной (см. рис. 4.2.3, в).

В двухтрубной системе (см. рис. 4.2.3, б) каждый отопительный прибор присоединяется отдельно к двум трубам - подающей и обратной, и вода протекает через каждый прибор независимо от других приборов.

За последнее время достаточно широко стала применяться коллекторная (веерная) схема соединения отопительных приборов (см. рис. 4.2.3, г). В этой схеме каждый из группы приборов присоединяется к общему коллектору.

Подвод теплоносителя к коллекторам, а также к отопительным приборам бифилярной системы, осуществляется, как правило, с помощью двухтрубного стояка (см. рис. 4.2.3, в, г).

Систему водяного отопления применяют с верхним и нижним расположением магистралей, с тупиковым или попутным движением воды в них.

При разработке систем отопления конкретного здания составляют схемы систем. В схеме устанавливается взаимное расположение теплообменников (котлов), циркуляционных насосов, теплопроводов, отопительных приборов и других элементов в зависимости от размещения их в здании, т. е. закрепляется топология или структура системы.

Расчет системы отопления заключается в определении её расчётной тепловой мощности, выбора диаметров всех трубных элементов (гидравлический расчёт), определении размеров отопительных приборов (тепловой расчёт) и подбора оборудования, используемого в данной системе.







 

Новости в формате rss:
Строительство:
экспорт новостей
Подпишитесь на нашу рассылку!
KNOW-HOUSE.RU строительные материалы и технологии
Subscribe.ru





  | конструктивные системы | фундаменты | стены и фасады | перекрытия | крыши | окна | двери и ворота | лестницы | балконы и лоджии | мансарды | полы | потолки | перегородки | зимние сады | гидро- и пароизоляционные материалы | теплоизоляционные материалы | звукоизоляционные материалы | подготовка к отделке | отделочные материалы | Искусственный камень | керамическая плитка и натуральный камень | краски | стекло | огнезащитные материалы | бетоны | отопление зданий | электрическое оборудование | вентиляция и кондиционирование | канализация | лифты и эскалаторы | Маркет строительных товаров | техническая инфотека | конференции по строительству | ГОСТы и СНиПы | строительные выставки | каталог товаров и фирм | программы для проектировщиков | архитектурные конкурсы | центры повышения квалификации | книги по строительству | проекты коттеджей | предыдущая версия сайта | новости от НOУ-ХАУС.ру | Строительные калькуляторы | Проекты домов заводской готовности  
  ИНФОРМАЦИОННАЯ СИСТЕМА ПО СТРОИТЕЛЬСТВУ "НОУ-ХАУС.ру" На главную страницу   Карта сайта
Copyright 2000-2023 © www.know-house.ru. All rights reserved


Top.Mail.Ru